Tensor-Based Learning for Predicting Stock Movements

نویسندگان

  • Qing Li
  • LiLing Jiang
  • Ping Li
  • Hsinchun Chen
چکیده

Stock movements are essentially driven by new information. Market data, financial news, and social sentiment are believed to have impacts on stock markets. To study the correlation between information and stock movements, previous works typically concatenate the features of different information sources into one super feature vector. However, such concatenated vector approaches treat each information source separately and ignore their interactions. In this article, we model the multi-faceted investors’ information and their intrinsic links with tensors. To identify the nonlinear patterns between stock movements and new information, we propose a supervised tensor regression learning approach to investigate the joint impact of different information sources on stock markets. Experiments on CSI 100 stocks in the year 2011 show that our approach outperforms the state-of-the-art trading strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Provide a stock price forecasting model using deep learning algorithms and its use in the pricing of Islamic bank stocks

Predicting stock prices is complicated; various components, such as the general state of the economy, political events, and investor expectations, affect the stock market. The stock market is in fact a chaotic nonlinear system that depends on various political, economic and psychological factors. To overcome the limitations of traditional analysis techniques in predicting nonlinear patterns, ex...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Forecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data

Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...

متن کامل

Deep Learning for Event-Driven Stock Prediction

We propose a deep learning method for eventdriven stock market prediction. First, events are extracted from news text, and represented as dense vectors, trained using a novel neural tensor network. Second, a deep convolutional neural network is used to model both short-term and long-term influences of events on stock price movements. Experimental results show that our model can achieve nearly 6...

متن کامل

The Predicting Power of Textual Information on Financial Markets

Mining textual documents and time series concurrently, such as predicting the movements of stock prices based on the contents of the news stories, is an emerging topic in data mining community. Previous researches have shown that there is a strong relationship between the time when the news stories are released and the time when the stock prices fluctuate. In this paper, we propose a systematic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015